
Stork User Manual

version 1.2.1

1 Building and installing Stork

Overview (quick start)

If you prefer not to read this entire section and just want to install a copy of

Stork as soon as possible, simply paste these commands into a shell, replacing

<install-path> with the path to the directory in which you want Stork to be

installed.

To install Stork from source:

Goto www.storkproject.org/downloads and download the appropriate files

$ tar xvf stork-1.2.1.tar.gz
$ cd stork-1.2.1/
$./configure --prefix=<install-path>
$ make install
$ export STORK_CONFIG=<install-path> /etc/stork_config
$ export PATH=$PATH:<install-path> /bin:<install-path> /sbin

Or to install the binary package: Goto www.storkproject.org/downloads and

download the appropriate files

$ tar xvf stork_binary-1.2.1.tar.gz
$ cd stork_binary-1.2.1/
$./stork-install.ksh <install-path>
$ export STORK_CONFIG=<install-path> /etc/stork_config
$ export PATH=$PATH:<install-path> /bin:<install-path> /sbin

Unless any errors occurred, Stork should now be installed on your system.

You may start the Stork server by running stork_server. If you did not specify

1

an installation path, Stork will by default be installed to /usr/bin/local.

1.1 Download and extract

Stork may be downloaded from the Stork project homepage by following the

Downloads link. You will have the option to download either the source version

or a pre-compiled binary package.

If you are a user of a unix-like system, it is recommended that you download

the source code, as this will allow you to better customize your installation. If

you are running on a system on which Stork is not known to compile, or you

find you are not able to compile from source for other reasons, you may want

to see if a binary package is available for your system.

After downloading a package which suits your needs, simply extract the

package with whatever tools you have at your disposal for decompressing and

untarring gzipped tar archives. Most users would simply use the tar command.

For example, to extract the Stork 1.2.1 source:

$ tar xvf stork-1.2.1.tar.gz

This will create a directory in your current directory containing the source

code. Afterwards, simply cd into the directory.

If you chose to download the binary package, you may now skip to the

Installation section. Otherwise, continue onward.

1.2 Externals

If you plan on building contributed (third-party) transfer modules for Stork,

you will need to download the externals package from the Stork website, and

place its contents into the ./externals/bundles/ directory. If you have no

such plans, you may skip this step completely.

2

http://www.storkproject.org/

The externals package, at this point, contains the following bundles: globus,

irods, openssl, and srb. The following table shows the protocols with available

transfer modules and the bundles required to compile them:

Protocol Bundles

FTP globus, openssl

GSIFTP globus, openssl

HTTP globus, openssl

iRODS irods, srb

SRB srb

Please note that Stork uses Globus components for file transfers using the

GSIFTP protocol (GridFTP). Therefore, you need to have the Globus Toolkit

installed and configured on your system with user/host certificates in order to

use this transfer module.

1.3 Configuring

After downloading and extracting the source, you must configure the source

tree with the configure script therein. Note, however, that if you are trying

to build a development version of Stork (odd minor version numbers), then you

will need to have autoconf and autoheader (at least version 2.59) installed

in order to first generate the configure script. This is unnecessary if you are

trying to build a release, as releases already contain a configure script.

To build the Stork client commands, the server, and the core (supported)

transfer modules, and install to the default /usr/local/stork directory, simply

run ./configure with no options. However, if you want to build contributed

(third-party) transfer modules, want to build Stork with other features, or need

to specify a special compiler or library to use, you must use additional op-

tions with ./configure. (A complete list of options may be seen by running

3

http://www.globus.org/toolkit/

./configure --help.)

You will probably want to specify a location other than the default location

(/usr/local/stork) to install Stork. If you are not a superuser, this is a

necessity. This can be done by specifying --prefix=path with ./configure,

where path is the directory in which you want to install Stork.

You might also want to build contributed transfer modules along with Stork.

This can be done by specifying --with-bundle with ./configure, where bundle

is the name of the external package necessary to build the transfer module in

question. If you specify all of the necessary bundles for a given transfer module

(as specified in the table in the Externals section) with --with-bundle , and

the bundles can all be found in the ./externals/bundles/ directory, then the

transfer module in question will be built. More information about this can be

found in the Externals section above and by running ./configure --help.

configure will take a few minutes to check that everything necessary for

building Stork is available on your system. After it is done running, you are

ready to move on to the next step.

1.4 Building

Building everything is simple: just run make.

Depending on the speed of your system and the number of externals you

require, building may take anywhere from 3 to 20 minutes. Just be patient.

Note that while external modules are building, output will stop for a significant

amount of time. Keep in mind that this is normal, and don’t worry that your

screen may have frozen. If you are interested in watching the output from those

external builds for some reason, you may do so by running (in another terminal,

of course) tail -f with the path to the build log shown before the module

begins building given as an argument.

4

1.5 Installation

If you have been building from source up to this point, all you have to do now

is run make install. This will install everything to the location specified with

--prefix when you ran ./configure, or to /usr/local/stork if you did not

specify anything. After it has installed (it shouldn’t take long), you may go to

the next step.

If you are installing from a binary package, you simply have to run the

included installation script with the desired installation path <install-path>

as an argument: ./stork-install.ksh <install-path>

This will extract the included binaries and place them in the location spec-

ified by <install-path> .

1.6 Post-installation

Now that you have installed Stork, you must configure your environment in

order to use Stork with minimal effort. Regardless of whether you built Stork

from source or downloaded the binaries, after the script you ran in the previous

step completes, you will be shown a message asking you to set your PATH and

STORK_CONFIG environment variables by running commands similar to these:

$ export STORK_CONFIG=/path/to/stork /etc/stork_config
$ export PATH=$PATH:/path/to/stork /bin:/path/to/stork /sbin

You should do as the script says! In order to make sure that your environ-

ment is configured properly every time you start a new shell, you should also

add these commands to a start-up script (e.g., the .bashrc file in your home

directory). This will prevent you from needing to run these commands every

time you want to use Stork.

If you have reached this point without a problem, you now have a working

Stork installation. :) You may test this by starting a Stork server with the

5

command stork_server. If you would like to edit the stork_config file and

configure your Stork installation further, it may be found in the etc directory

inside the newly installed Stork directory.

2 Running Stork

If a user called stork exists, the server will switch to the stork user for security

purposes.

The command below starts the Stork server connected to port <port> The

stork logs are named with the prefix Stork, such as StorkLog, Stork.history, etc.

stork_server -p <port> -Serverlog <stork/log/directory/Stork>

The Stork server generates a log file which is used for logging its activities.

Below is a sample of the log file:

cat local/log/StorkLog
0/23 16:55:24 **
10/23 16:55:24 ** stork_server (STORK) STARTING UP
10/23 16:55:24 ** /tmp/sbin/stork_server
10/23 16:55:24 ** $CondorVersion: 6.9.4 Sep 11 2008 $
10/23 16:55:24 ** $CondorPlatform: I386-LINUX_RHEL3 $
10/23 16:55:24 ** PID = 13697
10/23 16:55:24 ** Log last touched time unavailable (No such file or directory)
10/23 16:55:24 **
10/23 16:55:24 Using config source: /tmp/etc/stork_config
10/23 16:55:24 DaemonCore: Command Socket at <208.100.92.21:47661>
10/23 16:58:21 **
10/23 16:58:21 ** stork_server (STORK) STARTING UP
10/23 16:58:21 ** /tmp/sbin/stork_server
10/23 16:58:21 ** $Version: 6.9.4 Sep 11 2008 $
10/23 16:58:21 ** $Platform: I386-LINUX_RHEL3 $
10/23 16:58:21 ** PID = 14336
10/23 16:58:21 ** Log last touched 10/23 16:55:24
10/23 16:58:21 **
10/23 16:58:21 Using config source: /tmp/etc/stork_config
10/23 16:58:21 DaemonCore: Command Socket at <208.100.92.21:47712>
10/23 16:58:21 ==
10/23 16:58:21 STORK CONFIGURATION:
10/23 16:58:21 ==
10/23 16:58:21 DaP log file : storkserver.log
10/23 16:58:21 Userlog file : (null)
10/23 16:58:21 XML log file : (null)
10/23 16:58:21 Client Agent host: (null)
10/23 16:58:21 ==
10/23 16:58:21 STORK_TEST_MODE = 10 (0: do testing only - 10: run as server)
10/23 16:58:21 STORK_MAX_NUM_JOBS = 1

10/23 16:58:21 STORK_MAX_RETRY = 1
10/23 16:58:21 STORK_MAXDELAY_INMINUTES = 0
10/23 16:58:21 STORK_AGGR_LEVEL = 0 - 0: no aggregation

6

- 1: according to dest url; 2: according to src url - 3: if hostnames match
10/23 16:58:21 STORK_MAX_COUNT = 1 -
10/23 16:58:21 STORK_RECURSIVE_COPY = FALSE
10/23 16:58:21 STORK_VERIFY_CHECKSUM = FALSE
10/23 16:58:21 STORK_VERIFY_FILESIZE = FALSE
10/23 16:58:21 STORK_NETWORK_CHECK = FALSE
10/23 16:58:21 STORK_TRANSFER_CHECKPOINT = FALSE
10/23 16:58:21 STORK_SYNC_ONLY = FALSE
10/23 16:58:21 STORK_TMP_CRED_DIR = /tmp
10/23 16:58:21 STORK_MODULE_DIR = /tmp/libexec
10/23 16:58:21 modules will execute in LOG directory /tmp/local/log
10/23 16:58:21 Getting monitoring info for pid 14336
.....................
.....................

3 Stork Components

stork server:

The Stork server is the main component of the Stork scheduler. The Stork server

runs as a persistent daemon process and performs all management, scheduling,

execution, and monitoring of data placement activities.

The Stork server accepts the following parameters (defined by STORK_ARGS)

$ sbin/stork_server --help
==
USAGE: stork_server

[-t] // output to stdin
[-p] // port on which to run Stork Server
[-help] // stork help screen
[-Config] // stork config file
[-Serverlog] // stork server log in ClassAds
[-Xmllog] // stork server log in XML format
[-Userlog] // stork userlog in XMLformat
[-Clientagent] // host where client agent is running

==

stork submit:

stork_submit is a client-side tool used to submit stork jobs to the Stork server.

$ bin/stork_submit
usage: stork_submit [option]... [stork_server] submit_file
stork_server specify explicit stork server (deprecated)
submit_file stork submit file

-lognotes "notes" add lognote to submit file before processing

7

-stdin read submission from stdin instead of a file
-help print this help information
-version print version information
-debug print debugging information to console
-name stork_server stork server

stork status:

stork_status is a client side tool used to query regarding the status of jobs

submitted to the Stork server.

The dap_id is used by the stork_status commmand to query the Stork

server. The dap_id is generated and assigned to a job when it is submitted to

Stork using the stork_submit command.

The stork_status command accepts the following parameters, where host_name

is optional. The host_name is used to specify a Stork server on a remote host.

./stork_status -h
usage: stork_status [option]... [stork_server] job_id
stork_server specify explicit stork server (deprecated)
job_id stork job id

-help print this help information
-version print version information
-debug print debugging information to console
-name stork_server stork server

stork rm:

stork_rm is a client side tool used to delete any jobs that are currently queued

with the Stork server.

./stork_rm -h
usage: stork_rm [option]... [stork_server] job_id
stork_server specify explicit stork server (deprecated)
job_id stork job id

-help print this help information
-version print version information
-debug print debugging information to console
-name stork_server stork server

stork q:

8

stork_q is a client side tool used to retrieve a listing of jobs that are currently

queued with the Stork server.

./stork_q -h
usage: stork_q [option]... [stork_server]
stork_server stork server (deprecated)

-help print this help information
-version print version information
-debug print debugging information to console
-name stork_server stork server

Sample output from the stork_q command:

[
dest_url = "file:/home/user1/stork/data10M_48";
src_url = "file:/home/user1/stork/data10M";
remote_user = "user1@dsl-turtle06.cct.lsu.edu";
status = "request_rescheduled";
dap_id = 264;
use_protocol = 0;
stork_server = "qb1.loni.org";
dap_type = "transfer";
error_code = "port not accessible";
num_attempts = 1;
owner = "user1";
cluster_id = 264;
timestamp = absTime("2008-05-28T14:52:22-0500");
generic_event = "Rescheduling."

]

Stork server runs as a persistent daemon process. It constantly listens to

requests from the clients. The clients send their requests to the Stork server

over the network using stork_submit command line tool in form of a ClassAd

(Classified Advertisement).

Since Stork is designed to work in a heterogeneous computing environment,

one of its goals is to support as many storage systems and file transfer protocols

as possible.

Another important characteristic of Stork is reliability. It makes sure that

9

the requested transfers are completed successfully even in case of server or net-

work failures.

Stork source and destination URLs have a naming convention. All URLs

ending with a slash (/) are assumed to be directories and the rest are assumed

to be files.

Job Submission

Currently the following protocols and storage systems are supported by Stork:

• file

• FTP

• GridFTP

• HTTP

• iRODS

• PetaShare

• SRB

The protocol to be used is determined by the Stork server according to the

URL signatures of the files to be transfered.

URLs supported: The format of the URL for various supported protocols

is as below:

• file URL - file:/path/to/file

• FTP URL - ftp://user:password@host:port/path/to/file

• HTTP URL - http://user:password@host:port/path/to/file

• GridFTP URL - gsiftp://user:password@host:port/path/to/file

• SRB URL - srb://user[.mdasDomain[.zone]]:password@host:port/path/to/file

• iRODS URL - irods://user.zone:password@host:port/path/to/file

• PetaShare - petashare://path/to/file

10

Assuming that a service (SRB, iRODS, GridFTP, etc) is running at host on

port. Please note that in the URLs shown above the parameters denote:

• user - the username

• password - password corresponding to the username

• host - the host on which the service is running

• port - the port the service listens on

• /path/to/file - path to the location of the file you would like to transfer

• /path/to/directory/ - path to the directory you would like to perform
transfers

Sample Stork Job Requests

i) file to file transfer

[
dap_type = "transfer";
src_url = "file:/path/to/file";
dest_url = "irods://user.zone:password@host:port/path/to/file";

]

[
dap_type = "transfer";
src_url = "irods://user.zone:password@host:port/path/to/file";
dest_url = "file:/path/to/file";

]

ii) file selection using wild cards

[
dap_type = "transfer";
src_url = "file:/path/to/file*";
dest_url = "irods://user.zone:password@host:port/path/to/directory/";

]

[
dap_type = "transfer";
src_url = "file:/path/to/*file";
dest_url = "irods://user.zone:password@host:port/path/to/directory/";

]

11

[
dap_type = "transfer";
src_url = "file:/path/to/fi*le";
dest_url = "irods://user.zone:password@host:port/path/to/directory/";

]

[
dap_type = "transfer";
src_url = "file:/path/to/*";
dest_url = "irods://user.zone:password@host:port/path/to/directory/";

]

[
dap_type = "transfer";
src_url = "irods://user.zone:password@host:port/path/to/file*";
dest_url = "file:/path/to/directory/";

]

[
dap_type = "transfer";
src_url = "irods://user.zone:password@host:port/path/to/*file";
dest_url = "file:/path/to/directory/";

]

[
dap_type = "transfer";
src_url = "irods://user.zone:password@host:port/path/to/fi*le";
dest_url = "file:/path/to/directory/";

]

[
dap_type = "transfer";
src_url = "irods://user.zone:password@host:port/path/to/*";
dest_url = "file:/path/to/directory/";

]

iii) recursive transfer from local directory to SRB collection

[
dap_type = "transfer";
src_url = "file:/path/to/directory/";
dest_url = "irods://user.zone:password@host:port/path/to/directory/";

]

12

[
dap_type = "transfer";
src_url = "irods://user.zone:password@host:port/path/to/directory/";
dest_url = "file:/path/to/directory/";

]

Any of the supported protocols may be invoked by simply replacing the

URLs shown above by those of the protocols required. The new URLs should

however conform to their URL format as described in the supported URL format

section above.

4 New Features

Here is an example submit file including extended features.

etc/submitArgument.sample
[

dap_type = "transfer";
src_url = "gsiftp://$src.loni.org/home/balman/tests/$srcfile";
dest_url = "gsiftp://$dest.loni.org/home/balman/tests/dest-$destfile";
output = "out";
err = "err";
arguments = "-p 10";
set_permission = "066";
sync_only = true;
checkpoint_transfer = true;
network_check = true;
verify_filesize = true;
recursive_copy = true;

]

File size verification support

Currently all the transfer modules supported by Stork support file size ver-

ification. File size verification can either be turned on or off by specifying the

corresponding option in the Stork configuration file.

When switched on, Stork determines the file sizes of the files at the source

and the files at the destination and compares them. If the file sizes differ, an

13

error message is logged to the Stork log file.

Checksum verification support

Currently all the transfer modules supported by Stork support checksum

verification. Checksum verification can either be turned on or off by specifying

the corresponding option in the Stork configuration file.

When switched on, Stork computes the checksums of the files at the source

and the files at the destination and compares them. If the checksums differ, an

error message is logged to the Stork log file.

Recursive transfers

Currently all the transfer modules supported by Stork support recursive

directory transfers. Recursive directory transfers are specified in the URL by

ending the URLs with a ’/’ to represent a directory.

Wild card support

Currently all the transfer modules supported by Stork support transferring

files with a wild cards such as *.txt, stork*, *stork or st*rk.

Checkpointing File Transfers

Currently the Petashare and GridFTP transfer modules supported by Stork

support checkpointing of transfers and provide the capability of resuming trans-

fers in the event of an error.

These Stork modules checkpoint the transfers during various stages and thus

enable Stork to resume the transfer at the last checkpoint in the event of a

network outage or crash.

5 Running Stork in different machines

Stork provides the flexibility of running stork- server in one location and stork -

client in another location. This feature will be useful for many situations where a

server can’t run for extended period of time due to server access time limitations

14

Consider the following example. In this case, we are going to run stork_server

in dsl− condor machine and stork client in another machine called dsl-stork.

stork server is located in your sbin directory of the stork installation and clients

are located in bin directory.

Step 1: Start stork server in dsl − condor by running the following com-

mand

stork_server -p port number (Port number is the one you are going to

open for the connection)

For example, { stork_server -p 9621}

Step 2: In Client machine, you need to edit stork-config file. Declare

{Stork_host = destination:port number}

Step 3: Submit your jobs to the stork server from the client machine

{stork_submit dap file -name storkserveraddress : port number}

For example, {stork_submit test.dap -name dsl-condor.lsu.edu:9621}

Stork then returns the associated job id, which is used by other Stork job control

tools.

Step 4: You can do the regular stork client operation such as {stork_status, stork_q, stork_rm }

in client’s mchine

Step 5: You can look for server log entries in server side.

Stork fully supports GridFTP transfers, with the gsiftp:// protocol. To use

GridFTP with Stork, users must have a valid proxy. Specify the path or say

default to the created proxy using the x509proxy keyword in the Stork submit

15

file. Placing the special value x509proxy = ” default”; or x509proxy = ”

/tmp/x509up-uxxxx ”

Also, for GSIFTP transfers, you need to have client grid proxy initiated and

server grid proxy initiated. Stork will use the users credentials to authenticate

to the GridFTP server.

For example,

[
dap_type = "transfer";
src_url = "gsiftp://$src.loni.org/home/sivahpc/test/$srcfile";
dest_url = "gsiftp://$dest.dsl-stork.org/home/sivahpc/test/dest-$destfile";
x509proxy = "default";
]

6 Questions

Direct your questions to stork-devel@mail.cct.lsu.edu, if you have any problems
related to stork

7 Appendix

Platforms supported by Stork -1.2.1

The following are the list of transfer modules that are supported by Stork
in each of the platforms listed below.

16

Platforms Core Stork GridFtp SRB iRODS Petashare

ia64_rhas_3 Yes Yes Yes No No

ia64_rhas_4 Yes Yes Yes No No

ia64_sles_9 Yes Yes Yes No No

x86_64_fedora_8 Yes Yes Yes Yes Yes

x86_64_rhap_5 Yes Yes Yes Yes Yes

x86_64_rhap_5.2 Yes Yes Yes Yes Yes

x86_64_rhap_5.3 Yes Yes Yes Yes Yes

x8664rhap5.3updatedYes Yes Yes Yes Yes

x86_64_rhas_3 Yes Yes Yes Yes Yes

x86_64_rhas_4 Yes Yes Yes Yes Yes

x86_64_sles_9 Yes Yes Yes Yes Yes

x86_64_macos_10.5Yes Yes No No No

x86_64_deb_4.0 Yes Yes Yes Yes Yes

x86_deb_4.0 Yes Yes Yes No No

x86_rhap_5.0 Yes Yes Yes No No

x86_rhas_3.0 Yes Yes Yes No No

x86_rhas_4.0 Yes Yes Yes No No

x86_sles_9 Yes Yes Yes No No

x86_ubuntu_5.10 Yes Yes Yes No No

x86_macos_10.4 Yes No No No No

Figure 1: Stork Supported Platforms.

17

	Building and installing Stork
	Download and extract
	Externals
	Configuring
	Building
	Installation
	Post-installation

	Running Stork
	Stork Components
	New Features
	Running Stork in different machines
	Questions
	Appendix

