
Jeff Weber, Condor Project
Computer Sciences Department
University of Wisconsin-Madison

weber@cs.wisc.edu
http://www.cs.wisc.edu/condor

Using Stork
An Introduction

Condor Week 2006

2http://www.cs.wisc.edu/condor

Audience

• Users already familiar with Condor,
DAGMan, who need advanced data
placement capabilities.

• This tutorial makes an excellent
extension to this morning's Condor
User's tutorial.

3http://www.cs.wisc.edu/condor

Tutorial Outline
• Classical data transfer problems
• Stork solutions
• Stork data placement job

management
• Managing mixed data, CPU job work

flows with DAGMan

4http://www.cs.wisc.edu/condor

Meet Friedrich*:

He is a
scientist. But
he has a big

problem.

*Frieda's twin brother

5http://www.cs.wisc.edu/condor

I have a LOT of
data to process.

Where can I get
help?

6http://www.cs.wisc.edu/condor

Friedrich's problem …
• Many large data sets to process. For

each data set:

hstage in data from remote server

hrun CPU data processing job

hstage out data to remote server

7http://www.cs.wisc.edu/condor

“Classic” Data Transfer Job
#!/bin/sh

globus-url-copy source dest

Scripts often works fine for short,
simple data transfers, but…

8http://www.cs.wisc.edu/condor

Many things can go wrong!

• Errors are more likely with large data
sets:
h“The network was down.”
h“The data server was unavailable.”
h“The transferred data was corrupt.”
h“My workflow didn’t know the data was

bad.”

9http://www.cs.wisc.edu/condor

Enter Stork:

• Creates notion of a data placement
job: managed, scheduled just like a
Condor CPU job.

• Friedrich will benefit from:
hBuilt-in fault tolerance
hCompatible with Condor DAGMan

workflow manager

10http://www.cs.wisc.edu/condor

Supported Data Transfers
• local file system
• GridFTP
• FTP
• HTTP
• SRB

• NeST
• SRM
• modular

extensible to
other protocols

11http://www.cs.wisc.edu/condor

Fault Tolerance
• Retries failed jobs
• Can also retry failed job using

alternate protocol, e.g. “first try
GridFTP, then try FTP”

• Retry “stuck” jobs
• Configurable fault responses

12http://www.cs.wisc.edu/condor

Getting Stork
• Stork is bundled with Condor 6.7, and

all future releases
• Available as a free download from

http://www.cs.wisc.edu/condor
• Currently available for Linux

platforms

13http://www.cs.wisc.edu/condor

Friedrich Installs a
“Personal Stork” on his

workstation…
• What do we mean by a “Personal”

Stork?
hCondor/Stork on your own workstation,

no root access required, no system
administrator intervention needed

• After installation, Friedrich submits
his jobs to his Personal Stork…

14http://www.cs.wisc.edu/condor

Friedrich’s Personal Stork

Master Central
Mgr.

SchedD StartDStork

N compute elements
external
data
servers

DAG
data
jobs CPU

jobs

Friedrich's workstation:

15http://www.cs.wisc.edu/condor

Your Personal Stork will ...
• Keep an eye on your data and CPU jobs, and

will keep you posted on their progress
• Throttle maximum jobs running
• Keep a log of your job activities
• Add fault tolerance to your jobs
hDetect and retry failed data placement jobs

• Enforce data placement, CPU job order
dependencies

16http://www.cs.wisc.edu/condor

Creating a Submit
Description File

• A plain ASCII text file
• Neither Stork nor Condor care about file

extensions, nor statement order.
• Tells Stork about your job:
hdata placement type, source/destination

location/protocol, proxy location, input, output,
error and log files to use, command-line
arguments, etc.

17http://www.cs.wisc.edu/condor

Simple Submit File
// c++ style comment lines
[

dap_type = "transfer";
src_url = "gsiftp://server/path”;
dest_url = "file:///dir/file";
x509proxy = "default";
log = "stage-in.out.log";
output = "stage-in.out.out";
err = "stage-in.out.err";

]
Note: different format from Condor submit files

18http://www.cs.wisc.edu/condor

Running stork_submit
• You give stork_submit the name of

the submit file you have created:
stork_submit stage-in.stork

•stork_submit parses the submit
file, checks for it errors, and sends
job to Stork server.

•stork_submit returns the new job
id: the job “handle”

19http://www.cs.wisc.edu/condor

Sample stork_submit
stork_submit stage-in.stork
using default proxy: /tmp/x509up_u19100
================
Sending request:

[
dest_url = "file:///dir/file";
src_url = "gsiftp://server/path";
err = "path/stage-in.out.err";
output = "path/stage-in.out.out";
dap_type = "transfer";
log = "path/stage-in.out.log";
x509proxy = "default"

]
================

Request assigned id: 1
#

returned job id

20http://www.cs.wisc.edu/condor

The Job Queue

•stork_submit sends your job to the
Stork server:
hManages the local job queue

• View the queue with stork_q, or
stork_status …

21http://www.cs.wisc.edu/condor

Getting Job Status

•stork_q queries all active jobs

stork_q

•stork_status queries the named job
id, which may be active, or complete

stork_status 12

22http://www.cs.wisc.edu/condor

Removing jobs
• If you want to remove a job from the job

queue, you use stork_rm
• You can only remove jobs that you own (you

can’t run stork_rm on someone else’s jobs
unless you are root)

• You must give a specific job ID:
stork_rm 21 ·Removes a single job

23http://www.cs.wisc.edu/condor

More information about jobs
• Controlled by submit file log setting
• Stork creates a log file (user log)
h“The Life Story of a Job”
hShows all events in the life of a job
hAlways have a log file
hTo turn it on in submit file:
log = “filename”;

24http://www.cs.wisc.edu/condor

Sample Stork User Log
000 (001.-01.-01) 04/17 19:30:00 Job submitted from host: <128.105.121
...
001 (001.-01.-01) 04/17 19:30:01 Job executing on host: <128.105.121.53
...
008 (001.-01.-01) 04/17 19:30:01 job type: transfer
...
008 (001.-01.-01) 04/17 19:30:01 src_url: gsiftp://server/path
...
008 (001.-01.-01) 04/17 19:30:01 dest_url: file:///dir/file
...
005 (001.-01.-01) 04/17 19:30:02 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
0 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
0 - Total Bytes Received By Job

...

25http://www.cs.wisc.edu/condor

My jobs have have
dependencies…

Can Stork help solve my
dependency* problems?

* Not your personal problems!

26http://www.cs.wisc.edu/condor

Friedrich learns
DAGMan

•Directed Acyclic Graph
Manager

• DAGMan allows you to specify the
dependencies between your jobs, so it
can manage them automatically for
you.

• (e.g., “Don’t run job “B” until job “A”
has completed successfully.”)

27http://www.cs.wisc.edu/condor

What is a DAG?
• A DAG is the data

structure used by
DAGMan to represent
these dependencies.

• Each job is a “node” in the
DAG.

• Each node can have any
number of “parent” or
“children” nodes – as long
as there are no loops!

Job
A

Job
B

Job
C

Job
D

28http://www.cs.wisc.edu/condor

Defining Friedrich's DAG
• A DAG is defined by a text file, listing

each of its nodes and their dependencies:
data-process.dag
Data IN in.stork
Job CRUNCH crunch.condor
Data OUT out.stork
Parent IN Child CRUNCH
Parent CRUNCH Child OUT

• each node will run the Condor or Stork job
specified by accompanying submit file

IN

CRUNCH

OUT

29http://www.cs.wisc.edu/condor

Submitting a DAG
• To start your DAG, just run
condor_submit_dag with your dag file,
and Condor will start a personal DAGMan
daemon to begin running your jobs:
condor_submit_dag friedrich.dag

• condor_submit_dag submits a Scheduler
Universe Job with DAGMan as the
executable.

• Thus the DAGMan daemon itself runs as a
Condor job, so you don’t have to baby-sit it.

30http://www.cs.wisc.edu/condor

In Review
With Stork Friedrich now can…
• Submit his data processing jobs and

go home!
• Stork manages the data transfers,

including fault detection and retries
• Condor DAGMan manages his job

dependencies.

31http://www.cs.wisc.edu/condor

Additional Resources

•http://www.cs.wisc.edu/condor/stork/

•Condor Manual, Stork sections

•stork-announce@cs.wisc.edu list

•stork-discuss@cs.wisc.edu list

32http://www.cs.wisc.edu/condor

Questions?

33http://www.cs.wisc.edu/condor

Additional Slides

34http://www.cs.wisc.edu/condor

Important Parameters
•STORK_MAX_NUM_JOBS limits number

of active jobs
•STORK_MAX_RETRY limits job

attempts, before job marked as failed
•STORK_MAXDELAY_INMINUTES

specifies “hung job” threshold

35http://www.cs.wisc.edu/condor

Current Restrictions
• Currently, best suited for “Personal

Stork” mode
• Local file paths must be valid on Stork

server, including submit directory.
• To share data, successive jobs in DAG

must use shared filesystem

36http://www.cs.wisc.edu/condor

Future Work
• Enhance multi-user fair share
• Enhance support for DAGs without

shared filesystem
• Enhance scheduling with configurable

job requirements, rank
• Add job matchmaking
• Additional platform ports

37http://www.cs.wisc.edu/condor

Access to Data in Condor

• Use Shared Filesystem if available
• No shared filesystem?
hCondor can transfer files

• Can automatically send back changed files
• Atomic transfer of multiple files
• Can be encrypted over the wire

hRemote I/O Socket
hStandard Universe can use remote

system calls (more on this later)

38http://www.cs.wisc.edu/condor

Condor File Transfer
• ShouldTransferFiles = YES

hAlways transfer files to execution site
• ShouldTransferFiles = NO

hRely on a shared filesystem
• ShouldTransferFiles = IF_NEEDED

hWill automatically transfer the files if the submit and
execute machine are not in the same FileSystemDomain

Universe = vanilla
Executable = my_job
Log = my_job.log
ShouldTransferFiles = IF_NEEDED
Transfer_input_files = dataset$(Process), common.data
Transfer_output_files = TheAnswer.dat
Queue 600

39http://www.cs.wisc.edu/condor

condor_master
• Starts up all other Condor daemons, including

Stork
• If there are any problems and a daemon

exits, it restarts the daemon and sends email
to the administrator

• Acts as the server for many Condor remote
administration commands:
hcondor_reconfig, condor_restart,
condor_off, condor_on,
condor_config_val, etc.

40http://www.cs.wisc.edu/condor

DAGMan

Running a DAG

• DAGMan acts as a “meta-scheduler”,
managing the submission of your jobs to
Condor based on the DAG dependencies.

Condor
Job
Queue

B C

D

A

A
.dag
File

41http://www.cs.wisc.edu/condor

DAGMan

Running a DAG (cont’d)

• DAGMan holds & submits jobs to the
Condor queue at the appropriate times.

Condor
Job
Queue

C

D

B

C

B

A

42http://www.cs.wisc.edu/condor

DAGMan

Running a DAG (cont’d)

• In case of a job failure, DAGMan continues until it
can no longer make progress, and then creates a
“rescue” file with the current state of the DAG.

Condor
Job
Queue

X

D

A

B

Rescu
e

File

43http://www.cs.wisc.edu/condor

DAGMan

Recovering a DAG

• Once the failed job is ready to be re-run,
the rescue file can be used to restore the
prior state of the DAG.

Condor
Job
Queue

C

D

A

B

Rescu
e

File
C

44http://www.cs.wisc.edu/condor

DAGMan

Recovering a DAG (cont’d)

• Once that job completes, DAGMan will
continue the DAG as if the failure never
happened.

Condor
Job
Queue

C

D

A

B

D

45http://www.cs.wisc.edu/condor

DAGMan

Finishing a DAG

• Once the DAG is complete, the DAGMan
job itself is finished, and exits.

Condor
Job
Queue

C

D

A

B

